разрешение экрана, пиксели и ppi

Разрешение экрана смартфона для «чайников». А вы видите свыше 300 ppi?

Оценка этой статьи по мнению читателей:
4.9
(236)

Нужно ли при выборе смартфона ориентироваться на разрешение экрана? Есть ли смысл в покупке 4K или 8K телевизора? Является ли Retina-дисплей iPhone (с плотностью пикселей ~300 ppi) оптимальным выбором, если это уже предел человеческого зрения, как утверждает компания Apple?

На все эти вопросы вы получите исчерпывающие ответы в этой статье!

Однако следует помнить, что разрешение (как и ppi или плотность пикселей) — это далеко не единственный параметр, на который нужно обращать внимание при выборе любого экрана. Цветопередача, яркость, контрастность, цветовой охват, энергоэффективность — всё это не менее важно.

Кроме того, чем выше разрешение экрана, тем больше требуется вычислительных ресурсов, что, в свою очередь, влияет на время автономной работы устройства.

Но все эти нюансы не относятся к теме нашего разговора. Моя цель — дать однозначный и исчерпывающий ответ на вопрос о том, есть ли ощутимая разница в четкости картинки и до какого предела можно увеличивать количество пикселей, повышая воспринимаемую детализацию.

Минуты, секунды, углы…

Перед тем, как говорить о гаджетах, вначале нужно определиться в понятиях, чтобы не возникало никаких недоразумений. И для этого рассмотрим простой пример.

Представьте, что вы смотрите на две точки определенного размера с какого-то расстояния:

глаз смотрит на две точки
(c) Deep-Review

Сможете ли вы с точностью сказать, что перед вами две точки, а не одна? Судя по картинке, ответ очевиден. Мы можем в этом легко убедиться и проследить за тем, как свет от этих точек попадает на сетчатку «матрицу» нашего глаза:

свет от точек падает на глаза

Каждая точка оставила четкий «след» на сетчатке и мы их легко различаем. Но когда эти точки начнут сближаться, в какой-то момент их «следы» на сетчатке начнут сливаться в одно пятно:

маленький угловой размер

Если мы приблизим картинку, то увидим примерно следующее:

диск Эйри

Так происходит по той причине, что свет имеет двойную природу. Это и маленькие «шарики» энергии, которые сталкиваются с предметами и отлетают от них в разные стороны, словно шары для бильярда. И в то же время это волны — как те, что мы привыкли видеть на воде.

Когда свет проходит через маленькое круглое отверстие (зрачок глаза или диафрагму объектива), он проявляет свойства волны и оставляет на сетчатке размытые следы от этих волн. Чем меньше отверстие, тем более размытыми будут точки. Это явление называется дифракцией.

Если расстояние между точками будет небольшим, в какой-то момент их образы просто сольются в одно пятно и глаз уже не будет их различать. Наступление этого момента хорошо описал британский физик Рэлей еще в 1879 году (так называемый критерий Рэлея).

А теперь давайте еще раз посмотрим на два предыдущих рисунка и обратим внимание на углы, под которыми сходятся лучи света в каждом случае:

сравнение угловых размеров

Мы видим простую закономерность — чем ближе точки друг к другу, тем меньше угол между лучами, исходящими от них. На картинке слева лучи от двух точек сходятся под бóльшим углом (a), чем на примере справа (угол b).

Логично предположить, что существует такой угол между лучами, при котором на сетчатке уже не будет двух отдельных точек — они сольются в одно пятно. Другими словами, если угол между точками будет слишком маленьким, мы уже не сможем их различать.

Соответственно, сколько бы еще точек или объектов ни находилось между этими двумя точками — для нашего глаза они будут незаметными или неразличимыми.

Получается, мы можем оценивать расстояние между точками не только миллиметрами, но и углами, под которыми пересекаются лучи света. Таким же образом можно определять даже размеры самих объектов, а не только расстояние между ними.

Собственно, именно это мы и делаем постоянно в астрономии — измеряем углами размеры небесных тел. И здесь принцип точно такой же — лучи света, исходящие от краев наблюдаемого объекта будут пересекаться под разными углами в зависимости от размера объекта:

угловые размеры в астрономии

А если мы знаем расстояние до этого объекта, то можем легко высчитать и его реальный размер. Ведь это простой треугольник с одним известным углом (под которым пересекаются лучи света) и одной известной стороной (расстояние до объекта), а другая сторона (она и будет размером объекта) высчитывается по элементарной школьной формуле.

треугольник, образованный лучами света

Это и есть основные понятия, которые нужны нам для дальнейшего разговора!

Давайте еще раз подытожим:

  • Наш глаз видит какой-то объект или расстояние между объектами только в том случае, если от них исходят лучи света и попадают к нам на сетчатку;
  • Чем ближе объекты друг к другу или чем меньше сам объект, тем меньше будет угол, под которым пересекаются лучи света в нашем глазу;
  • Существует минимальный угол (угловой размер), при котором наш глаз еще способен увидеть объект или различить два объекта на небольшом расстоянии друг от друга. Все, что меньше этого угла — либо неразличимо (если мы говорим о расстоянии между двумя объектами), либо вообще невидимо без приборов (если речь идет просто о маленьком объекте).

Теперь нужно разобраться с тем, какой же этот минимальный угол, определяющий границы наших физических возможностей.

Нормальное зрение

Помните школьную проверку зрения? Когда врач просил закрыть один глаз и назвать букву, которую он показывает на вот такой табличке:

таблица сивцева

Это так называемая таблица Сивцева для проверки зрения. Сами буквы и их размер здесь подобраны неслучайно.

К примеру, обратите внимание на букву Ш. Главное в этой букве — 3 вертикальных палочки определенной толщины. Если взять 10-й ряд сверху (очень мелкий шрифт), то ширина каждой палочки этой буквы и расстояние между палочками равняются 1.45 мм:

буква Ш в таблице Сивцева

Если вы правильно назовете букву в 10-м ряду с 5 метров, тогда у вас нормальное зрение. Не лучшее, не идеальное, а просто нормальное. Получается, любой человек с обычным зрением способен увидеть с пяти метров две контрастные палочки толщиной 1.45 мм, которые находятся на расстоянии 1.45 мм друг от друга.

Если бы мы провели лучи света от двух палочек буквы Ш из 10-го ряда, то угол пересечения этих лучей с расстояния 5 метров был бы настолько маленьким, что изобразить его на экране просто не представляется возможным. Но для наглядности приведу грубый пример:

нормальное зрение по таблице Сивцева

И теперь возникает вопрос — под каким же углом пересекаются эти лучи? Думаете это 1°? На самом деле — в 60 раз меньше!

То есть, мы способны различить два объекта, лучи от которых пересекаются под углом всего 0.0166° (1/60). И это не идеальное зрение и даже не выше среднего. Это просто нормальный показатель.

Конечно, пользоваться числом 1/60 градуса не очень удобно, поэтому для него придумали название — 1 угловая минута или просто 1′. Хотите нарисовать угловую минуту — нарисуйте транспортиром 1°, а затем разделите его на 60 ровных отрезков и вы получите нужный угол. В свою очередь, 1 угловая минута также состоит из 60 отрезков — угловых секунд.

Так вот, идеальное зрение — это способность различать две точки, если угловое расстояние между ними всего 28 угловых секунд или 0.47 угловых минут! Возвращаясь к примеру с буквой Ш, можно посчитать, что с 5 метров такой «идеальный глаз» способен различить 2 черточки, толщиной 0.68 мм каждая, на расстоянии 0.68 мм друг от друга!

Это и есть предел человеческого зрения. А дальше в игру вступают законы физики (дифракция света, критерий Рэлея) и наша физиология (диаметр одной колбочки на сетчатке и плотность их расположения).

Но в среднем, конечно, таким зрением могут похвастаться единицы. Для остальных людей более реальная граница — это что-то ближе к 0.8 угловым минутам.

И здесь важно упомянуть еще одну деталь. Думаю, вы обратили внимание на то, что я постоянно указываю расстояние до объекта. Делаю я это неспроста.

С какого расстояния будем разглядывать пиксели?

Очевидно, что различить 2 точки на расстоянии 1 мм друг от друга гораздо проще с двадцати сантиметров, чем с пяти метров. Почему тогда зрение проверяется с пяти метров? И почему 1 угловая минута равна толщине или расстоянию в 1.45 мм? Как интерпретировать угловые размеры, если мы смотрим в экран смартфона с 25 сантиметров?

На самом деле, все эти вопросы — бессмысленны. В этом и заключается прелесть угловых размеров — они учитывают расстояние до предмета.

Если острота зрения человека составляет 1 угловую минуту, то с 25 см он сможет разглядеть точку диаметром 0.07 мм, с 5 метров — точку 1.5 мм, а со 100 метров — точку 3 см:

угловой размер и дистанция

Получается, нет никакой разницы, будет ли человек с пяти метров разглядывать картину, состоящую из точек диаметром 1.5 мм, или со ста метров — картину из точек диаметром 3 см, никакой разницы в детализации он физически не способен заметить.

Из этого следует один очень важный вывод: с определенного расстояния плотность пикселей (и разрешение экрана) не играют никакой роли. То есть, человек с хорошим зрением не сможет отличить 8K экран от FullHD или даже HD (720p), если смотреть на такие экраны с разного расстояния.

Связано это именно с угловым разрешением глаз. Если брать пример выше, то вместо одной точки диаметром 3 см на расстоянии в 100 метров может быть 3 точки диаметром 1 см каждая, но для нашего глаза это не будет играть никакой роли:

низкое угловое разрешение

Мы все равно увидим одно зеленое пятно без каких-либо деталей. Так как всё, что не выходит за пределы минимального угла, не различимо для глаза.

Теперь, когда мы разобрались со всем этим, давайте перейдем к экранам.

Разрешение экрана и плотность пикселей (ppi)

Разрешение экрана — это количество светящихся точек (пикселей) по горизонтали и вертикали. К примеру, разрешение экрана iPhone 8 составляет 750 x 1334 пикселя:

разрешение экрана iPhone

Зная это число, а также зная физический размер экрана в дюймах, мы можем легко посчитать плотность пикселей или ppi (количество пикселей на один дюйм). Для этого делим количество пикселей по горизонтали на ширину экрана в дюймах: 750/2.3 (ширина экрана — 2.3 дюйма). Получаем 326 ppi или 326 пикселей на дюйм.

Можно поступить еще проще, ведь обычно мы знаем только разрешение экрана и его диагональ в дюймах, а не ширину и высоту. Поэтому для определения ppi нужно диагональ экрана в пикселях разделить на диагональ в дюймах. А чтобы узнать диагональ в пикселях достаточно представить вот такой треугольник:

как посчитать ppi

Длины катетов мы знаем (это разрешение по горизонтали и вертикали), а гипотенузу находим по теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов). Для нашего iPhone 8 диагональ2=7502+13342, отсюда диагональ = 1530 пикселей. Теперь делим это число на диагональ экрана в дюймах (4.7) и получаем 326 ppi.

Если бы мы взяли тонкую полосочку толщиной в 1 пиксель и длиной в 1 дюйм (2.54 см), то эта полоска состояла бы ровно из 326 светящихся точек. Это и есть ppi.

Из этого следует, что размер одной точки (одного пикселя) составляет примерно 0.078 мм или 78 мкм (25.4 мм делим на 326 точек). Можем ли мы заметить на таком экране отдельные точки? Способен ли наш глаз различить пиксели размером примерно 0.08 мм?

Как вы уже понимаете, вопрос поставлен не совсем корректно. Ведь угловое разрешение глаза учитывает расстояние до предмета. Если мы берем нормальное зрение (1 угловую минуту), тогда с расстояния 50 см глаз способен различить точку диаметром 145 мкм (0.145 мм), что почти вдвое превышает размер пикселя iPhone.

Даже если брать человека с очень хорошим зрением (0.8 угловых минут), то его глаз способен различить на таком расстоянии точку в 116 мкм (0.116 мм), что снова гораздо больше точки на экране iPhone (78 мкм).

Однако многие люди смотрят в экран с расстояния 20-25 см (например, когда мы читаем книгу на смартфоне). И вот здесь всё становится гораздо интереснее.

Знаменитые 300 ppi

На презентации первого смартфона с экраном высокой четкости, Стив Джобс дословно сказал, что 300 точек на дюйм (300 ppi) — это предел сетчатки человека, если смотреть в экран с расстояния 25-30 см.

Давайте проверим это заявление. К слову, если кому-то интересно, как именно я определяю угловые размеры, то в двух словах объясню. Вначале нужно на калькуляторе посчитать тангенс нужного угла, а затем умножить его на расстояние до объекта.

Если мы берем среднестатистическое зрение, то это 1 угловая минута или 1/60° (0.0166). Смотрим на калькуляторе, чему равняется tg(0.0166). Это будет 2.9*10-4. Теперь умножаем это число на 30 см и получаем 0.0087 см или 0.087 мм, или 87 мкм.

Действительно, человек с обычным зрением с расстояния 30 см тоже не сможет различить отдельные точки на экране с плотностью пикселей 326 ppi, где каждая точка имеет размер 78 мкм.

Но уже с 25 см глаз среднестатистического человека различает предметы 72 мкм. А если брать хорошее зрение (0.8 угловых минут), то такой человек способен с 25 см увидеть отдельные точки размером 58 мкм, что значительно меньше точек iPhone.

Говорить об идеальном зрении (0.47 угловых минут) и вовсе неуместно. Такой «эталонный глаз» теоретически способен различить точку 34 мкм с расстояния в 25 см! Естественно, для обладателя такого глаза пикселизация Retina-экрана будет ужасающей.

Рассчитываем лучшее разрешение

Итак, мы убедились, что с расстояния в 25 см даже самый обычный глаз с разрешением в 1 угловую минуту способен различить пиксели на экране с плотностью 326 ppi. А человек с хорошим зрением (0.8′) — и подавно!

Но здесь важен не только сам факт того, заметите ли вы сознательно отдельные пиксели или нет. Я прекрасно помню, с каким удовольствием в начале нулевых читал книги на своем КПК iPAQ 1940. Четкость его экрана с разрешением 240 на 320 точек казалась мне исключительной, хотя объективно размер этих точек был просто огромным.

И только переходя на новые устройства с более качественными экранами, я осознавал, насколько плохими и нечеткими были экраны предыдущих гаджетов.

Конечно, нельзя сравнивать старые 240p-экраны с новыми дисплеями даже бюджетных аппаратов. Но когда вы переходите с того же iPhone 8 (с экраном 326 ppi) на устройство с экраном 400 ppi, вы вполне можете ощутить разницу в четкости изображения (например при чтении текста), даже не обращая внимания на отдельные пиксели.

Если же брать верхнюю границу, за которой уже нет смысла повышать количество точек на дюйм (ppi), то мы можем составить такую таблицу (в первой колонке До экрана указано расстояние, с которого мы смотрим в экран):

До экранаОбычное зрение (1′)Отличное зрение (0.8′)Предел зрения (0.47′)
20 см437 ppi552 ppi940 ppi
25 см352 ppi437 ppi747 ppi
30 см291 ppi362 ppi619 ppi
40 см218 ppi273 ppi470 ppi
50 см175 ppi218 ppi373 ppi
100 см87 ppi109 ppi186 ppi

Из этого следует, что если человек с отличным зрением смотрит в экран своего устройства с расстояния в 40 см, он не заметит никакой разницы между дисплеем с плотностью точек 552 ppi, 328 ppi или 273 ppi. Во всех этих случаях картинка будет идентичной по четкости и смысла в более высоком разрешении нет никакого.

Конечно, есть области применения экранов, где даже самой высокой плотности из таблицы будет недостаточно — это виртуальная реальность, когда экран находится на расстоянии в пару сантиметров от глаз. Здесь нужно говорить о другой детализации.

OLED против IPS

Кроме того, нужно учитывать еще один важный момент — всё, что было сказано выше, справедливо только для IPS-экранов, у которых «один пиксель» физически состоит из 3 субпикселей одинакового размера — красного, зеленого и синего:

субпиксели IPS-экранов
Фото IPS-экрана сделано макро-камерой Redmi Note 10 Pro

Если мы говорим, что плотность пикселей IPS-экрана составляет 326 ppi, это значит, в 1 дюйме помещается 326 синих, 326 зеленых и 326 красных субпикселей.

Но когда речь идет об AMOLED-экранах, здесь ситуация сильно отличается, так как практически в любом AMOLED-экране количество красных и синих субпикселей в 2 раза меньше количества зеленых субпикселей:

субпиксели OLED-экранов
Современная AMOLED-матрица под микроскопом

Поэтому, когда вы видите, что экран iPhone 12 Pro имеет плотность пикселей 458 ppi, не обольщайтесь. Это значит, что в этом экране 458 зеленых субпикселей на 1 дюйм. Но когда мы посчитаем количество красных или синих субпикселей, то их окажется заметно меньше — 324 ppi.

Повторюсь, это касается практически любого AMOLED-экрана. И по этой причине приведенная выше таблица будет выглядеть несколько иначе для AMOLED-экранов. Так как иногда на контрастных границах изображения человек даже с обычным зрением (1′) сможет с 25 сантиметров заметить неровность шрифтов на AMOLED-экране с плотностью пикселей 450 ppi.

Что же касается телевизоров, то здесь работает тот же принцип. При выборе оптимального разрешения нужно учитывать физический размер экрана и расстояние, с которого вы будете на него смотреть.

Вместо выводов

Я еще раз хочу подчеркнуть основную мысль, которую пытался донести в этой статье. Вы можете выбирать любой экран, игнорируя его разрешение.

Многие люди предпочтут автономность небольшой разнице в четкости. Кому-то вообще безразлично, видны ли пиксели, если очень вглядываться и выискивать недостатки.

Эта статья отвечает лишь на один конкретный вопрос — есть ли смысл в увеличении разрешения экрана и до каких пределов можно увеличивать плотность пикселей, замечая (при желании) разницу в четкости картинки.

Как мы разобрались, для того, чтобы глаз спутал изображение на экране с реальностью, нужна достаточно высокая плотность пикселей, которая пока не встречается повсеместно даже на флагманских смартфонах.

Конечно, детализация — это лишь часть общей картины, но для многих она важна. И 300 ppi — это далеко не предел человеческого зрения.

Алексей, глав. редактор Deep-Review

 

P.S. Не забудьте подписаться в Telegram на наш научно-популярный сайт о мобильных технологиях, чтобы не пропустить самое интересное!

Если вам понравилась эта статья, присоединяйтесь к нам на Patreon - там еще интересней!

 

Как бы вы оценили эту статью?

Нажмите на звездочку для оценки

Внизу страницы есть комментарии...

Напишите свое мнение там, чтобы его увидели все читатели!

Если Вы хотите только поставить оценку, укажите, что именно не так?

Подписаться
Уведомить о
15 комментариев
Новые
Старые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии
Арбуз
1 месяц назад

Вы еще забыли про размеры границ между пикселями.
К примеру в старом редми ноте5про дпиай чуть лучше
чем на более новом самсунге м14
фактически равны 400 и 405

но по факту глядя в редми
ощущение что у него зерна раза в полтора крупнее
и грубое зернистое изображение.
Сначала не понял почемутак
а потом под увеличительным стеклом увидел
граница между пикселями у редми в 3 если не в 5 раз толще

И когда смотришь и читаешь текст на самсунге
глаза буквально нежатся от гладкой картинки и ровных шрифтов

И да,
У многих людей зрение уже не 100% и часто они уже очкарики
с диоприями -3 ,-4 или -5( как у меня)

И таким людям гораздо удобней пялиться в смарт без очков
с расстояния 33см 25 см или 20см
Тогда их глаза расслаблены словно они смотрят в бесконечность.
Правда одним глазом конечно))))

Так вот с этого расстояния Зерна при дипиай меньше 400 хорошо видны.

Юлия
1 год назад

Спасибо за статью, прочитала с удовольствием. Интересно сравнить расчеты по таблице и реальность.
У меня нормальное зрение и два планшета с ppi 280 и 220. По таблице получается, что экраны должны быть одинаковые с расстояния 30 и 40 см, но экран у планшета с ppi 280 мне комфортен при любом расстоянии, даже вблизи. Есть конечно разница в четкости если положить рядом телефон с ppi 400, но самих пикселей не вижу.
А на планшете с ppi 220 я отчетливо вижу огромные пиксели с 50 см, с 60 см небольшие пиксели, с 70 см уже не вижу пикселей.

Оксана
2 лет назад

добрый день!
открыла информацию по айфону 8:

  • 4.7-inch (diagonal) widescreen LCD Multi-Touch display with IPS technology
  • 1334-by-750-pixel resolution at 326 ppi
  • dimensions: 5.45 inches * 2.65 inches

Делю 750 на 2.65 и 1334 на 5.45 — и у меня не получается 326. почему так? откуда взялась 2.3, которая у вас в статье указана?

Павел
2 лет назад

Я как то на 1000 поставил,и оп черный экран и кирпич) больше туда не лезу)) а автор канала крут, и объясняет адекватно и доступно

Артем
2 лет назад

Шикарная статья!
Отдельное спасибо за то что прояснили разницу в детализации у IPS и Amoled матриц. Всегда глазом замечал что при одинаковом разрешение у Amoled пиксели больше бросаются в глаза. Сейчас технически стало понятно почему)

Александр
2 лет назад

Теперь ждём статью про предел восприятия по частоте экрана в Гц. Вроде в отдельных статьях эта тема была затронута, но отдельной я что-то не нашёл.

Александр
2 лет назад

Где-то примерно на статье, в которой было описано про строение ухо и про то что наш мозг додумывает низкие частоты, я уже точно осознал что нас мозг додумывает очень многое. Когда-то у меня была lumia 1320 6 дюймов и разрешение 720p и конечно если всматриваться, то там видны эти пиксели, но когда я пользовался, никаких пикселей не видел, наш мозг сам додумывает всё и отбрасывает всё лишнее. А теперь давайте вспомним детство и ЭЛТ экраны с разрешение 1024×768, кто видел пиксели когда в NFS или GTA играл?.. Лично я отношусь к тем людям, которые считают что высокое разрешение — трата энергии. У Apple много минусов, но их подход к ppi мне нравится.
Спасибо Алексей за то что с помощью математики показываете границу между комфортом для человека и маркетингом производителя.

Alex
2 лет назад
Ответить на  Александр

Позволю себе не согласиться!

Если Вы попробуете сейчас поиграть в ГТА на таком разрешении, то вы явно будете замечать пикселизацию. Я сейчас, после 4к разрешения, садясь за full hd монитор, испытываю дискомфорт. А в детстве и палка — автомат. Те игры, в которые я в детстве играл недавно глянул на Ютуб — там, наверное, 300х200 разрешение.

Megabass
2 лет назад

В очередной раз с интересом прочитал Вашу статью — вроде и так всё примерно знал/понимал, но теперь точно понимаю/знаю 🙂
P.S. «Для этого любую сторону экрана в дюймах делим на количество пикселей:» — тут наверное ошибка — правильно видимо наоборот 🙂

Вячеслав
2 лет назад

Чем выше разрешение тем выше достоверность цвета (на фото и видео), что автор не затрагивает. А, про резкость (контраст, собственно) все написано отлично.

Михаил
2 лет назад

Спасибо, за интересную и понятную статью!! В свое время 1940 был очень выгоден и оптимален))

Vova
2 лет назад

Получаеться amoled и ретина ips в айфонах это один и тот же экран по детализации ?