апертура

Камера смартфона для «чайников» №1. Диафрагма. Как свет проникает внутрь камеры?

Оценка этой статьи по мнению читателей:
5
(34)

В каждом обзоре смартфона перед тем, как перейти к детальному обсуждению камеры, я всегда привожу ее краткие технические характеристики, в частности, указываю параметры объектива и матрицы. Выглядит это примерно следующим образом:

  • Основная камера: 108 Мп, 1/1.33″, f/1.8, 26 мм, 0.8 мкм, PDAF
  • Телеобъектив: 12 Мп, 1/3.4″, f/2.0, 52 мм, 1.0 мкм, PDAF, OIS

Если вы далеки от мира фотографии, все эти буквы и цифры совершенно ни о чем вам не говорят. И в этой серии статей я постараюсь подробно и доступно объяснить каждое из этих понятий. Но простого объяснения здесь недостаточно, оно должно быть корректным. Дело в том, что многие, кто якобы разбираются в «обычной» фотографии, привнесли целый ряд мифов и заблуждений в «мобильную» фотографию.

Даже на самых авторитетных ресурсах сплошь и рядом встречается мнение, будто размер матрицы смартфона напрямую влияет на глубину резкости кадра. Другие, видя диафрагму f/1.6 и сравнивая ее со своим большим фотоаппаратом, не понимают, почему смартфон не дает такого же красивого эффекта боке (размытия фона), как и зеркалка.

О фокусном расстоянии, размерах матрицы и кроп-факторах даже говорить не стоит — здесь заблуждений еще больше.

В общем, мы начинаем целую серию статей, которая на очень простых и понятных примерах позволит вам разобраться во всех характеристиках современных камерофонов, проследив за тем, как обычный лучик света превращается в фото-шедевр.

Уверяю вас, после этих статей вы будете разбираться в данной теме лучше многих профессиональных фотографов, даже в том случае, если до этого ничего не понимали в фотографии.

И в первой части мы поговорим о диафрагме. Но прежде нам нужно понять, как вообще свет «переносит» картинку, ведь это не настолько банальное явление, как может кому-то показаться.

Волшебство в темном ящике!

Представьте себе небольшой ящик из очень плотного картона, внутрь которого не проникает свет:

коробка

Давайте проделаем в стенке этого ящика большое круглое отверстие:

коробка с большим отверстием

Даже маленький ребенок понимает, что в ящике стало светло и мы можем видеть всё, что в нём находится.

А теперь я задам простой вопрос, на который многие не смогут ответить правильно. Как вы думаете, что произойдет, если мы значительно уменьшим диаметр этого отверстия? Внутри коробки просто станет темнее? Не совсем.

В реальности случится то, что одни посчитают настоящим волшебством, а другие и вовсе не поверят! На противоположной стенке появится цветное изображение всего того, что находится перед отверстием:

пример камеры обскура

И это будет работать не только с маленькими коробками. Вы даже можете закрыть окна в своей комнате каким-то непрозрачным материалом, проделать в нем небольшое (пару сантиметров) отверстие и на стене появится цветное изображение всего, что происходит за окном. Примерно, как на этом снимке:

Центральный парк (Нью-Йорк)
Центральный парк (Нью-Йорк) на стенах комнаты

Я думаю, вы обратили внимание на то, что изображение парка перевернуто вверх ногами, как и картинка внутри ящика на предыдущей иллюстрации. Но что здесь вообще происходит? Почему вместо обычного света в комнате или ящике появляется изображение, будто кто-то включил проектор? И почему эти изображения перевернуты?

Ответив на поставленные вопросы, мы поймем самый базовый принцип работы камеры смартфона.

Итак, вернемся к ящику. Свет, исходящий от солнца (или другого источника) попадает на все предметы и отражается от каждой их точки в разные стороны. Давайте проследим, как и куда будут падать лучи света, отраженные от штанов и головы парня из нашего примера:

как свет отражается от предмета

Как видите, от одной конкретной точки на голове или штанах исходит множество лучей света в разные стороны. Часть из них ударяется в ящик, а другие проходят сквозь отверстие и попадают на внутреннюю стенку.

Так как это отверстие очень большое, через него проходит множество лучей, каждый из которых падает в разные места под своим углом. В результате мы не видим никакого четкого изображения, все цвета смешаны в один. Получается, внутри ящика просто стало больше света.

Но если сделать это отверстие очень маленьким, бо́льшая часть отраженных лучей просто окажутся заблокированными внешней стенкой ящика и не попадут на внутреннюю стенку, а те лучи, что отразились от одной точки и прошли сквозь отверстие, соберутся примерно и в одной точке на стенке:

как свет отражается от предмета в камере обскура

Конечно, отверстие не настолько мало, чтобы пропускать буквально по одному лучику света. Но даже если на стенку будет попадать несколько лучей, отраженных от одной и той же точки, мы все равно увидим относительно резкие очертания предметов.

К сожалению, нельзя просто взять и поместить в смартфон маленькую коробочку с микроскопическим отверстием. Туда будет попадать очень мало света, снимки будут очень темными и смазанными. Дело в том, что с уменьшением отверстия, четкость изображения с определенного момента начнет снижаться. Связано это с таким физическим явлением, как дифракция света (мы не будем подробно останавливаться на этом явлении, просто знайте, что сильно уменьшать отверстие нельзя).

Что же делать? Логика подсказывает, что отверстие нужно оставлять большим, чтобы света было много. Но в то же время, нужно сделать так, чтобы все лучи, отраженные от одной конкретной точки предмета и прошедшие через большое отверстие, не падали куда попало, а собирались в такую же конкретную точку на стенке.

Сделать это можно только одним способом. Нужно как-то изменить направление лучей света, чтобы они в итоге всегда пересекались в одной точке. Другими словами, необходимо для каждого лучика света установить в отверстие ящика крохотную призму, которая и будет преломлять свет, изменяя направление его движения. Если луч света проходит через верхнюю часть отверстия, он должен отклониться вниз, если проходит по центру — пусть так и дальше идет, а если — внизу, тогда пусть отклоняется вверх:

лучи света проходящие через призму

В итоге, все три луча, несмотря на то, что прошли через разную часть отверстия, сошлись в одной единственной точке, что дало нам резкое и четкое изображение. Но в реальности лучей-то не 3 и не 300, а бесчисленное множество! Поэтому использовать миллионы маленьких призм — не выход. Нам нужна одна призма такой формы, чтобы лучи света отклонялись тем сильнее, чем дальше они проходят от центра (выше или ниже). И такое устройство придумали — это всем нам знакомая линза.

Давайте вставим такую линзу в ящик с большим отверстием и посмотрим, что произойдет теперь:

как свет проходит через линзу камеры

Как видите, изображение на стенке получилось очень ярким и четким. Четким — потому что каждый лучик света, отраженный от одной и той же точки, оказался в одном месте на стенке ящика (линза собрала все лучи в одну точку). А яркий — по той причине, что мы сделали большое отверстие и собрали очень много света, то есть, множество лучей.

Вот теперь можно говорить о камере смартфона, которая и является по сути маленькой коробочкой с большим отверстием, в котором установлена линза (объектив):

модуль камеры смартфона

Конечно, в объективе любого смартфона используется много линз (чем больше — тем лучше) и причин для этого несколько:

  • Камера должна как-то уметь фокусироваться и для этого нужна дополнительная линза, которая бы двигалась вперед-назад.
  • Оптическая стабилизация (в основном) также реализована при помощи дополнительных линз, которые могут свободно двигаться вверх-вниз и влево-вправо. Если хорошенько потрясти смартфон, можно услышать дребезжащий звук, издаваемый этими линзами.
  • Также изображение, полученное при помощи одной линзы, будет не очень качественным из-за различных цветовых и геометрических искажений. Дополнительные линзы и разное их покрытие значительно улучшают качество картинки.

Что интересно, наши глаза — это такие же «коробочки», в которые свет проникает через маленькие отверстия, в точности, как в примере с ящиком!

Зрачок — это и есть отверстие, через которое свет проникает внутрь глаза. Сразу за ним расположена «линза» (хрусталик), которая фокусирует все лучи света в одну точку, чтобы построить резкое изображение на «стенке» (сетчатке):

как работает глаз человека

Как видите, везде используется один и тот же принцип! И теперь, когда мы понимаем, как лучи света переносят изображение и что делает его резким, перейдем к главному вопросу.

Что такое диафрагма (f/1.8) камеры смартфона и на что она влияет?

На самом деле, у каждого смартфона размер отверстия, через которое свет проникает в камеру, может сильно отличаться. И это значительно влияет на качество фотографий.

РЕКЛАМА

Размер отверстия всегда указывается в технических характеристиках смартфона в виде буквы f с каким-то числом через дробь, например, f/1.6 или f/2.3. Это число называется диафрагменным числом.

Само отверстие в камере (объективе) называется апертурой. То есть, чем больше апертура, тем больше отверстие. А диафрагма — это непрозрачная преграда вокруг апертуры (отверстия). Просто взгляните на следующую картинку и вам всё станет понятно:

что такое диафрагма и апертура камеры смартфона

Чем сильнее мы закрываем диафрагму (на картинке — f/16), тем меньше становится отверстие (апертура) и тем меньше света проникает внутрь камеры. И наоборот, чем сильнее открыта диафрагма (f/2.8), тем больше отверстие и тем больше света попадает в камеру.

В основном диафрагма на смартфонах фиксирована. Она не может изменяться так, как на больших камерах. То есть, если в характеристиках сказано, что диафрагма f/2.3, вы никак не сможете открыть ее до значения, скажем, f/1.8. Но бывали и исключения, в частности, на некоторых флагманах от Samsung диафрагма могла изменяться.

Итак, диафрагма сообщает нам, насколько светосильным является объектив, то есть, какое количество света он способен пропустить за определенный промежуток времени. Чем сильнее она открыта — тем больше света.

Но это не единственное (и для многих даже не главное) свойство диафрагмы. Размер отверстия напрямую влияет на глубину резкости кадра. Если вы хотите снять портрет с красивым размытием фона, нужно сильнее открыть диафрагму (например, f/2.8). И наоборот, чем сильнее закрываете диафрагму (например, f/16), тем большая область сцены будет резкой. Соответственно, с маленьким отверстием часто снимают пейзажи и архитектуру, когда хотят, чтобы максимальная часть кадра была в фокусе.

Почему же это происходит? Как размер отверстия может влиять на степень размытия фона?

В реальности, только размер отверстия и расстояние от камеры до объекта съемки влияют напрямую на этот параметр. Всё остальное (размер матрицы, фокусное расстояние) связано с размытием фона лишь косвенно. Но давайте разберемся подробнее!

Для простоты, нарисуем лучи света, отраженные от дерева и прошедшие через линзу (то есть, на картинке показано то, что происходит внутри объектива):

как диафрагма влияет на глубину резкости

Все лучи пересекутся только в одной точке и именно в этой точке изображение будет по-настоящему в фокусе. Если здесь мы разместим матрицу камеры, то получим резкую фотографию дерева.

Но наши глаза далеко не идеальны и мы не можем увидеть разницу между маленькой точкой на пересечении лучей и чуть большим пятном, которое бы получилось перед или за фокусом. Благодаря этому, мы видим в фокусе не только дерево, но и другие объекты, находящиеся сзади или спереди дерева.

То есть, мы будем видеть резкими и те предметы, лучи от которых не сошлись в одной точке, а находятся на небольшом расстоянии друг от друга (показано синими стрелками на картинке выше). В фокусе получается сам объект съемки, а также небольшая область до и после схождения лучей. Всё вместе это называется глубиной резкости (показано красной стрелкой на картинке выше).

Посмотрите, что будет, если мы начнем изменять размер диафрагмы, то есть, увеличивать размер отверстия в объективе:

как изменяется глубина резкости в зависимости от диафрагмы

Угол схождения лучей будет изменяться, а вместе с ним изменится и глубина резкости. Ведь, как я уже сказал выше, мы воспринимаем резкими все предметы, если расстояние между лучами света, отраженного от предмета, небольшое. На картинке выше это расстояние показано синими стрелочками и оно не меняется, но так как угол лучей другой, в фокус попадает меньше пространства.

Надеюсь, теперь вы понимаете, каким образом диафрагма влияет на светосилу объектива и на глубину резкости.

Так почему же моя зеркальная камера с объективом f/2.8 размывает фон намного лучше, чем телефон с диафрагмой f/1.8?

Всё дело в том, что физический размер отверстия в крупном объективе гораздо больше, чем отверстие в объективе маленького смартфона. Вот как выглядят диафрагмы смартфона и объектива зеркального фотоаппарата с идентичным диафрагменным числом f/1.8:

сравнение объектива смартфона и зеркалки
Два объектива с одинаковой диафрагмой и фокусным расстоянием 28 мм

Несмотря на одинаковые диафрагмы (f/1.8) и эквивалентные фокусные расстояния (28 мм), реальный диаметр отверстия в объективе зеркалки составляет примерно 15 мм, в то время, как диаметр отверстия в объективе iPhone SE 2020 составляет около 2 мм!

Получается, глубина резкости камеры iPhone SE 2020 с объективом f/1.8 примерно соответствует глубине резкости зеркальной камеры с объективом f/14 при аналогичном фокусном расстоянии.

С такой диафрагмой ни о каких портретах даже речи быть не может, так как для этих целей на зеркалках используется диафрагма f/2.8 или около того. Именно поэтому за красивое размытие фона в портретном режиме отвечает не физика, а искусственный интеллект смартфона. Подробнее об этом я рассказывал в статье о вычислительной фотографии.

Но тогда получается, что диафрагма ни о чем нам не говорит, так как на разных устройствах она означает совершенно разные физические размеры? Нет.

Диафрагменное число — это относительная величина. Зная эту характеристику смартфона, можно очень легко высчитать реальный размер отверстия любого объектива. Для этого достаточно фокусное расстояние объектива (f) разделить на диафрагменное число. Именно поэтому диафрагма и записывается, как f деленное на число.

Но здесь мы сталкиваемся уже с другим понятием — фокусным расстоянием. И в следующей части я подробно расскажу о том, что это такое, на что оно влияет, как узнать настоящее фокусное расстояние объектива и как по этим параметрам можно реально оценивать качество камеры того или иного смартфона с точки зрения физики.

Подытожим первую часть

В этой статье мы разобрались с тем, как вообще свет формирует изображение на любой поверхности, будь-то стенка ящика, сетчатка глаза или матрица камеры.

Также мы подробно разобрались с тем, что такое диафрагма и почему размер отверстия, через которое свет попадает внутрь камеры, является очень важной характеристикой.

При выборе смартфона следует всегда обращать внимание на диафрагменное число (f/1.8, f/2.2 и т.д.). Ведь чем оно меньше, тем больше света будет захватывать камера и можно получить меньшую глубину резкости, а значит, более красивые снимки с художественной точки зрения.

Но, к сожалению, оценивать камеру только по диафрагменному числу нельзя и пример с объективом зеркального фотоаппарата очень наглядно это показал. Чтобы объективно сравнить камеры двух смартфонов, нам нужно учитывать 3 параметра: диафрагму (то, что мы сегодня разобрали), фокусное расстояние и размер матрицы.

Обо всём этом и поговорим в следующей части статьи!

Алексей, главред Deep-Review

 

P.S. Мы открыли Telegram-канал и сейчас готовим для публикации очень интересные материалы! Подписывайтесь в Telegram на первый научно-популярный сайт о смартфонах и технологиях, чтобы ничего не пропустить!

 

Понравилась статья? Поделитесь с другими:
  •  
  • 2
  •  
  • 1
  •  
    3
    Поделились

Как бы вы оценили эту статью?

Нажмите на звездочку для оценки

Внизу страницы есть комментарии...

Напишите свое мнение там, чтобы его увидели все читатели!